EFFECT OF TREATMENT WITH L-CARNITINE, CO-ENZYME Q10 AND ZINC-METHIONINE AS STIMULANTS ON SEMEN QUALITY AND SOME BLOOD PARAMETERS OF DAMASCUS GOAT BUCKS DURING SUMMER SEASON OF EGYPT.

M. S. Abd-Allah1; El-Kelawy, H.M.1; Ibrahim, H.1; El-Gaafary M.N1. and Abou El-Ela, A. A2.
1- Department of Animal and Poultry Production, Faculty of Technology & Development, Zagazig University, Zagazig, Egypt.
2- Sheep & Goats Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Egypt.

e.mail: drhassan_2105@yahoo.com

ABSTRACT

A total number of twelve healthy Damascus goats' bucks aged 1.7-2.3 years and weighed 56.7±1.34 kg were used to study the effects of treatment with L-carnitine, Co-enzyme Q10 and Zinc-methionine on semen quality and some blood parameters in Damascus goat bucks. The bucks were assigned to four groups (3 bucks in each group). The first group (control) was fed basal ration composed of 60% concentrate feed mixture (CFM) plus 20% clover hay and 20% rice straw. The 2nd group was fed basal ration and injected with 50 mg L-carnitine/Kg live body weight twice weekly. The 3rd group was fed basal ration and injected with 6 mg Coenzyme Q10/kg live body weight twice weekly. The 4th group was fed basal ration and orally administered daily 25 mg Zinc-methionine. Physical semen characteristics, physiological response parameters and blood biochemical parameters were studied.

The obtained results showed that treatment with L-carnitine, Coenzyme Q10 and Zinc-methionine significantly (P<0.01) improved semen quality of Damascus goat bucks. Bucks injected with 50 mg L-carnitine/Kg live body weight recorded the best values of physical semen characteristics as compared to goats injected with 6 mg Coenzyme Q10/kg live body weight or those administered 25 mg Zinc-methionine. Hair, skin and rectal temperatures were significantly (P<0.0%) decreased in goat bucks treated with L-carnitine, Coenzyme Q10 and Zinc-methionine than the control group. Values of pulse rate (beat/min) and respiration rate (beat/min) were not significantly affected by treatment with L-carnitine, Coenzyme Q10 and Zinc-methionine.

Treatment with L-carnitine, Coenzyme Q10 and Zinc-methionine were not significantly affected on most of all blood biochemical parameters with the exception of AST, Testosterone and cortisol levels.
were significantly (P<0.05 or P < 0.01) affected in the treated groups compared to the control group. Goat bucks injected with 50 mg L-carnitine recorded the lowest values of AST and the highest values of testosterone as compared to the other groups. However, goat bucks injected with Coenzyme Q10 6 mg/ kg live body weight recorded the highest value of cortisol as compared with the other groups.

In conclusion, injection of Damascus goat bucks with L-carnitine at level of 50 mg/Kg body weight or CoQ10 at level of 6 mg/Kg body weight or orally administration of zinc methionine at level of 25 mg/head/day improve their semen quality, maintain their health status and protect them from heat stress during hot summer season of Egypt.

Keywords: Goats, L-carnitine, Co-enzymeQ10, Zinc-methionin, semen quality, physiological response and blood biochemical.

INTRODUCTION

In Egypt, the high temperature in summer season is accompanied with the high relative humidity, which is normally over 85% during the day and can reach 100% during the night (Marai et al. 2001). Temperature-humidity index (THI) is mild about 20.2 (from January until May) and high about 30.1 in hot months (from June until October) (Marai et al. 2002; Marai et al. 2005). Several studies have suggested that to adversely affects the heat exposure get energy to all cell functions of the animal body.

L-carnitine is a natural, vitamin-like amino acid, synthesized within the body from lysine and methionine (Vaz et al. 2002), and is very important in the metabolism of lipids. It carries long chain fatty acids to the mitochondria for beta oxidation, which produces energy (ATP) needed by the cells for proper functioning (Hoppel 2003; Ramsay et al. 2001). Also, L-carnitine plays an important role in the processes of cellular detoxification, since it removes excess of acyl-CoA from the mitochondria, which has a toxic effect (Arrigoni- Martelli and Caso 2001). It also protects cellular membranes against oxidative damages resulting from peroxidation of polyunsaturated fatty acids that are a component of membrane phospholipids (Kalaiselvi and Panneerselvam 1998). Inside a sperm cell, L-carnitine transports fatty acids to the mitochondria, where they undergo beta-oxidation leading to the generation of metabolic energy needed by the sperm cells for their progressive movements (Jeulin et al. 1987). Moreover, The L-carnitine increases semen ejaculate volume /ml, sperm motility, live sperm percentage, sperm concentration and total sperm output in buck rabbits (Seleem et al.2006 ; El-Tohamy et al. 2012; Abdel-Hamed et al.
Coenzyme Q10 is a fat soluble vitamin-like substance present in every cell of the body and serves as a coenzyme for several of the key enzymatic steps in production of energy within the cell (Kapoor and Kapoor, 2013). Coenzyme Q10 plays a key role in the mitochondrial electron transport chain, and it is a critical coenzyme in the synthesis of ATP (Abdulhasan et al., 2015). Also, CoQ10 is an antioxidant that has great importance against free radicals (Bentinger et al., 2007) protects the stability of the cell membrane, DNA from free radicals induced oxidative damage and helps recycling of vitamin E and maintain healthy energy levels ((Kozink et al. 2004 and El-Tohamy et al., 2012). The Coenzyme Q10 increases semen ejaculate volume /ml, sperm motility, live sperm percentage, sperm concentration and total sperm output in buck rabbits (Eman 2019 and El-Sayed et al. 2019), in stallions (Nogueira 2015 and Carneiro et al. 2018) and human (Gvozdjáková et al. 2013 ; Gvozdjákova et al. 2015 and Salvio et al. 2021)

Zinc is a vital element for a multitude of body functions, including thyroid metabolism and many of other physiological processes (Baltaci et al. 2004). Also, zinc is involved intimately in many aspects of sperm morphology, physiology and biochemistry; although a considerable controversy exists over mechanism of action of zinc in the male reproductive system (Lord and Averill 2002). Smith and Akinbamizo (2000) indicated that more than 200 zinc dependent enzymes and hormones have been identified in all the main biochemical pathways. Hartoma et al. (1977) reported that zinc is a structural part of protein involved in synthesis and secretion of testosterone hormone. Spermatogenesis requires amino acids, especially arginine, methionine and cysteine (Young et al. 2008) and minerals Zn and Se (Cheah and Yang 2011). Mandal et al. (2008) found that the any supplementation with organic chelated zinc has been found more bioavailable as compared to inorganic zinc. Imam et al. (2009) reported that the highest values of serum testosterone and zinc levels were recorded for bulls supplemented with zinc propionate, while the lowest values were observed with the control bulls. Kumar et al. (2013) found that dietary Zn and Se supplementation can improve the antioxidative status and hormone levels by increasing the Zn level in blood serum and seminal plasma of goat.

Therefore, the present study aimed to evaluate the efficacy of treatment with L-carnitine, Co-enzyme Q10 and zinc-methionine on semen quality and some blood parameters for Damascus goat bucks during summer season in Egypt.
MATERIALS AND METHODS

The experimental work of the present study was carried out at El-Gemmaiza Experimental Station, Animal Production Research Institute, Agriculture Research Center, Egypt. The experimental work was initiated in June and terminated in September, 2020. Analysis of blood samples, were conducted in a private Lab., Zagazig Egypt. The objective of this study was to investigate the effects of treatment with L-carnitine, Co-enzyme Q10 and Zinc-methionine on semen quality and some blood parameters in Damascus goat bucks in summer season of Egypt.

A total number of twelve healthy Damascus goats' bucks aged 1.7-2.3 years and weighed 56.7±1.34 kg were used during summer season. The bucks were assigned to four groups (3 bucks in each group). The first group was used as a control and fed basal ration composed of 60% concentrate feed mixture (CFM) plus 20% clover hay and 20% rice straw. The 2nd group was fed basal ratio and injected with 50 mg L-carnitine/Kg live body weight twice weekly. The 3rd group was fed basal ration and injected with 6 mg Coenzyme Q10/kg live body weight twice weekly. The 4th group was fed basal ration and orally administered daily 25 mg Zinc-methionine. Composite feedstuffs samples were taken and stored for proximate analysis, according to A.O.A.C (2016). The basal ration was formulated to meet the nutrient requirement of goat bucks according to NRC (1981). Chemical compositions of feed ingredients of the basal ration are presented in Table (1).

Animals were housed in semi open sheds under natural daylight conditions. Ambient air temperature was recorded using digital thermometer, while RH was recorded using hair-hygrometer. Index of temperature-humidity (THI) was calculated according to equation of Livestock Poultry Heat Stress Index (1990) and modified by Marai et al. (2000) as follows:

\[
\text{THI} = \text{dbT} - [(0.31 - 0.31 \text{ RH}) (\text{dbT} - 14.4)]
\]

Where: \(\text{dbT}\) = dry bulb temperature in Celsius \(^\circ\)C and \(\text{RH}\) = relative humidity/100. The obtained values of THI were classified as absence of heat stress (≤ 22.2), moderate heat stress (>22.2 - ≤ 23.3), severe heat stress (>23.3 - ≤ 25.6) and very severe heat stress (> 25.6).

The bucks were allowed to drink clean fresh water \textit{ad lib}. Vitamins and minerals blocks were available all the time to.

Semen samples were collected twice weekly over twelve weeks from 12 Damascus goat bucks with aid of an artificial vagina. Each ejaculate was taken to measure physical semen characteristics. (Ejaculate volume (ml), wave motion, progressive linear motility (%), dead spermatozoa (%), sperm concentration/ml \(\times 10^6\) and total sperm output\(\times 10^6\)) were investigated according to the procedures of Adams (1981) El-Gaafary (1987) and El-Kelawy (1993).
Table (1): Chemical composition of feed ingredients of the basal ration.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rice straw</th>
<th>Berseem hay</th>
<th>Concentrate feed mixture (CFM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>88.32</td>
<td>90.92</td>
<td>89.21</td>
</tr>
<tr>
<td>OM</td>
<td>81.25</td>
<td>85.65</td>
<td>90.85</td>
</tr>
<tr>
<td>CP</td>
<td>3.22</td>
<td>14.55</td>
<td>15.40</td>
</tr>
<tr>
<td>CF</td>
<td>40.15</td>
<td>26.91</td>
<td>14.85</td>
</tr>
<tr>
<td>EE</td>
<td>0.97</td>
<td>1.51</td>
<td>2.88</td>
</tr>
<tr>
<td>NFE</td>
<td>36.91</td>
<td>42.68</td>
<td>57.72</td>
</tr>
<tr>
<td>Ash</td>
<td>18.75</td>
<td>14.35</td>
<td>8.15</td>
</tr>
</tbody>
</table>

*CFM: Concentrate feed mix contained in percentage; 37% yellow corn, 30% undecorticated cotton seed, 20% wheat bran, 6.5% rice bran, 3% molasses, 2.5% limestone, 1% common salt.

Blood samples collected regularly at 4 weeks intervals from bucks of each group, by jugular vein puncture, just before morning feeding and drinking which started before collecting semen. Harvested plasma, after centrifugation at 4000 rpm for 15 minutes, was stored at – 20 °C until chemical analysis of total protein and albumin (Doumas and Biggs, 1972); urea (Henry, 1965); creatinine (Bartels, 1971); triglycerides (Mc Gowan et al., 1983) and cholesterol (Richmond, 1973). Testosterone concentration was estimated by radio-immunoassay (RIA) according to Ekins (1984). Also, cortisol hormones were evaluated by RIA procedure using the coated tubes kits purchased from (Diagnostic Products Corporation, Los Angeles, CA, USA) according to the procedure outlined by manufacturer. Enzyme activity of aspartate (AST) and alanine (ALT) transaminases (Reitman and Frankel, 1957) were estimated using commercial kits by calorimetric determination of plasma.

Individual hair temperature, skin temperature, rectal temperature, pulse rate (PR) and respiration rate (RP) as a physiological measurements of goat bucks were recorded once weekly through the experimental period. Hair temperature, skin temperature and rectal temperature were measured by digital thermometer. Counts of pulse rate (number of pulses/min) and respiration rate (number of breaths/min) were estimated using stop watch.

Statistical analysis:

Least Square Maximum Likelihood method of analysis (SPSS, Statistics Users Guide, Version 21) was used to analyze the obtained data according to Snedecor and Cochran (1982) using the formula:

\[Y_{ij} = \mu + T_i + e_{ijk} \]
Where: Y_{ij} is any observation, μ is the overall mean of observation, T_i is the effect of treatment and e_{ijk} is the random error.

The differences between LSM (least square means) were analyzed by Duncan's New Multiple Range test (Duncan, 1955).

RESULTS AND DISCUSSION

THI values of the experimental period:

Data of ambient air temperature (oC), relative humidity (%) and temperature humidity index (THI) showed that animals during the experimental periods from July to September months were severe heat stress condition (Table 2) according to equation of Marai *et al.* (2002).

Table 2: Ambient temperature (oC), relative humidity (RH %) and temperature humidity index (THI) during the experimental period.

<table>
<thead>
<tr>
<th>Experimental period</th>
<th>Ambient temperature (oC)</th>
<th>Relative humidity (%)</th>
<th>THI</th>
<th>Status of heat stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>37.5</td>
<td>56</td>
<td>24.56</td>
<td>Severe heat stress</td>
</tr>
<tr>
<td>August</td>
<td>38.5</td>
<td>55</td>
<td>25.25</td>
<td>Severe heat stress</td>
</tr>
<tr>
<td>September</td>
<td>34.9</td>
<td>55</td>
<td>23.62</td>
<td>Severe heat stress</td>
</tr>
<tr>
<td>Mean</td>
<td>36.97 ±1.07</td>
<td>55.33 ±0.33</td>
<td>24.48 ±0.48</td>
<td>Severe heat stress</td>
</tr>
</tbody>
</table>

Physical semen characteristics

Results of physical semen characteristics (ejaculate volume (ml), wave motion (Score), sperm motility (%), dead spermatozoa (%), abnormal spermatozoa (%), sperm concentration/ml (x106/ml) and total sperm output (x106)) for Damascus goats bucks treated with L-carnitine, Coenzyme Q10 and Zinc-methionine are presented in Table 3.

Data in Table 3 show that administration of L-carnitine, Coenzyme Q10 and Zinc-methionine significantly (P<0.01) improved semen quality of Damascus goats bucks. Ejaculate volume (ml), wave motion, sperm motility (%), sperm concentration (x106/ml) and total sperm output (x106) were increased, while dead spermatozoa (%) and abnormal spermatozoa (%) were decreased in semen of bucks given L-carnitine, Coenzyme Q10 and Zinc-methionine compared to those of the control one. However, the goats bucks injected with 50 mg L-carnitine/Kg live body weight showed the best values of physical semen characteristics as compared to goats injected with 6 mg Coenzyme Q10/ kg live body weight or those administered 25 mg Zinc-methionine.
Table 3: Physical semen characteristics of Damascus goat bucks treated with L-Carnitine, Coenzyme Q10 and Zinc methionine during summer season.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Treatments</th>
<th>Control</th>
<th>L-Carnitine</th>
<th>Coenzyme Q10</th>
<th>Zinc methionine</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejaculate Volume (ml)</td>
<td></td>
<td>1.26±0.03</td>
<td>1.93±0.03</td>
<td>1.53±0.03</td>
<td>1.80±0.027</td>
<td>**</td>
</tr>
<tr>
<td>Wave motion (Score)</td>
<td></td>
<td>3.36±0.07</td>
<td>4.73±0.06</td>
<td>3.86±0.08</td>
<td>4.33±0.08</td>
<td>**</td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td></td>
<td>50.68±2.12</td>
<td>84.55±0.78</td>
<td>68.26±1.76</td>
<td>78.41±1.35</td>
<td>**</td>
</tr>
<tr>
<td>Dead spermatozoa (%)</td>
<td></td>
<td>17.94±0.38</td>
<td>10.23±0.22</td>
<td>13.53±0.32</td>
<td>11.24±0.24</td>
<td>**</td>
</tr>
<tr>
<td>Abnormal spermatozoa (%)</td>
<td></td>
<td>16.73±0.49</td>
<td>10.00±0.22</td>
<td>12.65±0.25</td>
<td>10.76±0.25</td>
<td>**</td>
</tr>
<tr>
<td>Sperm concentration (x10⁹/ml)</td>
<td></td>
<td>3.489±0.55</td>
<td>4.76±0.49</td>
<td>3.97±0.70</td>
<td>4.24±0.73</td>
<td>**</td>
</tr>
<tr>
<td>Total sperm output (x10⁹)</td>
<td></td>
<td>4.39±0.12</td>
<td>9.17±0.17</td>
<td>6.07±0.16</td>
<td>7.61±0.16</td>
<td>**</td>
</tr>
</tbody>
</table>

Means in the same raw within the same classification with different letter, differ significantly (P<0.05).

** = (P ≤ 0.01)

Narasimhaiah *et al.* (2018) found that goat bucks fed a diet supplemented with organic-zinc had higher sperm concentrations, higher (P <0.01) sperm livability, more motility and velocity compared to those fed basal diet only the control. Moreover, Liu *et al.* (2020) observed that 40 mg Zn/kg DM (zinc sulfate) in Cashmere goats during the breeding season increased the semen volume and total sperm output compared to those of the control. Similarly, the results obtained by Abdel-Khalek *et al.* (2015) showed significant (P<0.05) increase in ejaculate volume, sperm motility, live sperm percentage, sperm concentration and total sperm output of Friesian bulls orally administered daily of free L-carnitine at level of 2 g/head/day for 3 months for 3 months. Also, Ghorbani *et al.* (2018) found that rams fed diet supplemented with zinc during 120 days improves ejaculate volume, sperm motility, live sperm percentage, sperm concentration and total sperm output during the breeding season. Also, Abdel-Hamed *et al.* (2014) recorded significant (P<0.05) increase in ejaculate volume, sperm motility, live sperm percentage, sperm concentration and total sperm output of buck rabbits treated with L-
Carnitine at a dose of 140 mg/kg. Also, El-Nattat et al. (2011) and El-Tohamy et al. (2012) found that oral administration of coenzyme Q10 at a dose of 10 mg/kg increased semen ejaculate volume /ml, sperm motility, live sperm percentage, sperm concentration and total sperm output of New Zealand White (NZW) buck rabbits. Moreover, Eman (2019) found that semen ejaculate volume /ml, sperm motility, live sperm percentage, sperm concentration and total sperm output showed a significant (P<0.05) increase with injection of buck rabbits with Coenzyme Q10 compared to the control.

One the other hand, El-Hawary et al. (2018) found that feeding the Frisian bulls a diet with zinc-methionine at a level of 4 mg/kg of BW/day during two preliminary months and three main semen collection months improves ejaculate volume, sperm motility, live sperm percentage, sperm concentration and total sperm output under hot summer conditions in Egypt.

Physiological response:

Data of thermoregulatory parameters (hair temperature, skin temperature, rectal temperature, pulse rate (PR) and respiration rate (RP)) of Damascus goats bucks treated with L-carnitine, Coenzyme Q10 and Zinc-methionine are presented in Table 4.

Hair, skin and rectal temperatures were significantly (P< 0.05) decreased in goats bucks treated with L-carnitine, Coenzyme Q10 and Zinc-methionine compared to the control group, reflecting the highest physiological response of goat bucks to L-carnitine and coenzyme Q10 under hot summer conditions in Egypt. Values of pulse rate (beat/min) and respiration rate (beat/min) were not significantly affected by treatment with L-carnitine, Coenzyme Q10 and Zinc-methionine.

Abdel-Khalek et al. (2015) indicated that farm animals undergo from heat stress when they expose to high environmental temperature through summer months, especially during June, July and August.

These results are in agreement with those obtained by Ayyat et al. (2021) who found that the supplementing the diet of New Zealand White rabbits with L-carnitine at the level of 50 mg/Kg diet significantly decreased rectal physical semen characteristics, body temperature, heart rate, and respiration rate. Also, Khalifa et al. (2011) reported similar physiological response of buffalo cows treated with zinc methionine under hot environmental conditions during June, July and August months in Egypt.
Table 4: Physiological parameters of Damascus goat bucks treated with L-Carnitine, Coenzyme Q10 and Zinc methionine during summer season.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Control</th>
<th>L-Carnitine</th>
<th>Coenzyme Q10</th>
<th>Zinc-methionine</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoregulatory parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectal temperature (°C)</td>
<td>39.33±0.09</td>
<td>39.00±0.084</td>
<td>39.05±0.08</td>
<td>39.19±0.09</td>
<td>*</td>
</tr>
<tr>
<td>Hair temperature (°C)</td>
<td>35.82±0.10</td>
<td>35.57±0.09</td>
<td>35.56±0.08</td>
<td>35.65±0.09</td>
<td>*</td>
</tr>
<tr>
<td>Skin temperature (°C)</td>
<td>37.50±0.09</td>
<td>37.23±0.09</td>
<td>37.17±0.08</td>
<td>37.29±0.09</td>
<td>*</td>
</tr>
<tr>
<td>Pulse rate (beat/min)</td>
<td>74.25±0.29</td>
<td>74.19±0.31</td>
<td>73.83±0.31</td>
<td>74.36±0.29</td>
<td>NS</td>
</tr>
<tr>
<td>Respiration rate (beat/min)</td>
<td>25.25±0.29</td>
<td>25.71±0.29</td>
<td>25.32±0.25</td>
<td>25.17±0.27</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS = Not significant and * = (P ≤ 0.05)
Means in the same row within the same classification with different letter, differ significantly (P<0.05).

Blood biochemical parameters:

Data in Table 5 show that Most of blood biochemical parameters with the exception of AST, Testosterone and cortisol levels were not affected significantly by administration of L-carnitine, Coenzyme Q10 and Zinc-methionine. Goat bucks injected with 50 mg L-carnitine/Kg live body weight recorded the lowest values of AST and the highest values of testosterone as compared with the other groups. However, the goats bucks injected with Coenzyme Q10 6 mg/ kg live body weight recorded the highest value of cortisol as compared with the other groups.

Similar results were obtained by Kala *et al.* (2016) who showed that supplementation of 40 ppm of Zn from zinc methionine in the diet of kids increase of testosterone level the in blood serum. Also, Liu *et al.* (2015) showed that the testosterone concentration was higher (P < 0.05) in goats fed diet supplemented with 40 or 80 mg Zn/kg DM compared with those fed on basal diet only. Moreover, El-Hawary *et al.* (2018) concluded that
Table 5: Biochemical blood parameters of Damascus goat bucks treated with L-Carnitine, Coenzyme Q10 and Zinc methionine during summer season.

<table>
<thead>
<tr>
<th>Items</th>
<th>control</th>
<th>L-Carnitine</th>
<th>Coenzyme Q10</th>
<th>Zinc-methionine</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (mg/dl)</td>
<td>6.04 ±0.10</td>
<td>6.24 ±0.17</td>
<td>6.02 ±0.13</td>
<td>6.00 ±0.14</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin (mg/dl)</td>
<td>3.86 ±0.15</td>
<td>3.93 ±0.17</td>
<td>3.74 ±0.16</td>
<td>3.93 ±0.14</td>
<td>NS</td>
</tr>
<tr>
<td>Globulin (mg/dl)</td>
<td>2.15 ±0.12</td>
<td>2.32 ±0.15</td>
<td>2.22 ±0.12</td>
<td>2.07 ±0.13</td>
<td>NS</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>1.86 ±0.16</td>
<td>1.80 ±0.23</td>
<td>1.78 ±0.18</td>
<td>1.99 ±0.20</td>
<td>NS</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>39.89 ±1.85</td>
<td>37.00 ±3.01</td>
<td>38.11 ±2.44</td>
<td>45.39 ±6.13</td>
<td>NS</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>23.44 ±1.62</td>
<td>28.11±11.53</td>
<td>19.89 ±1.81</td>
<td>19.78 ±1.56</td>
<td>NS</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>15.78 ±0.83</td>
<td>15.00 ±0.76</td>
<td>15.56 ±0.65</td>
<td>16.44 ±0.88</td>
<td>NS</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>57.11ab±2.93</td>
<td>47.22b±2.98</td>
<td>50.89b±3.02</td>
<td>57.56a±3.14</td>
<td>*</td>
</tr>
<tr>
<td>Urea(mg/dl)</td>
<td>39.44±1.17</td>
<td>40.44±1.46</td>
<td>39.33±0.75</td>
<td>39.33±0.33</td>
<td>NS</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.80±0.03</td>
<td>0.90±0.08</td>
<td>0.93±0.05</td>
<td>0.94±0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Testosterone (ng/mL)</td>
<td>4.43c±1.03</td>
<td>12.85b±1.65</td>
<td>8.36b±1.39</td>
<td>8.90b±1.63</td>
<td>**</td>
</tr>
<tr>
<td>Cortisol (mg/dl)</td>
<td>9.29b±1.67</td>
<td>7.58b±0.58</td>
<td>11.16b±1.66</td>
<td>8.03b±0.98</td>
<td>*</td>
</tr>
</tbody>
</table>

NS = Not significant, * = (P ≤ 0.05) and ** = (P ≤ 0.01)
Means in the same row within the same classification with different letter, differ significantly (P<0.05).

Treating the Frisian bulls with zinc-methionine at a level of 4 mg/kg of BW/day showed an increase of testosterone in blood serum, while cortisol level decreased in blood plasma as compared to control one under hot summer conditions in Egypt.

Abdel-Hamed et al. (2014) indicated that significant (P<0.05) increase in serum testosterone of buck rabbits fed L-Carnitine at a dose of 140 mg/kg body weight as compared to the control group. On the other hand, Hamad et al. (2016) found that rabbits group treated with Coenzyme Q10 did not affect the concentration of total proteins (TP), albumin (AL), creatinine (CR), urea (UR), cholesterol (CH) and triglycerides (TG) concentrations and ALT activity in blood serum. Also, Sobhanirad and Naserian (2012) found no difference in biochemical parameters of cow serum (aminotransferase (AST), Alanine aminotransferase (ALT) total protein (TP), albumin (AL), creatinine (CR), urea (UR), cholesterol (CH) and triglycerides (TG) fed diet
supplemented with zinc-methionine. Moreover, El-Hawary et al. (2018) concluded that Frisian bulls given in the diet zinc-methionine at a level of 4 mg/kg of BW/day showed the lowest (P<0.05) activity of aminotransferase (AST), Alanine aminotransferase (ALT). However, the treatment does not affect total proteins (TP), albumin (AL) and globulin (GL) as compared to the control one under hot summer conditions of Egypt.

CONCLUSION
From the present study, it could be conclude that injection of goat bucks with L-carnitine at level of 50 mg/Kg body weight or CoQ10 at level of 6 mg /Kg body weight or orally administration of zinc methionine supplementation at level of 25 mg/head /day improve their semen quality and maintain their health status and protect them from heat stress during summer season of Egypt. The best results were obtained by treatment with L-carnitine. More studies are required to support such results.

REFERENCES

Eman, H. A. (2019). Studies on some reproductive traits in rabbits. *Master of sciences, Department of animal production, Faculty of Agriculture Benha, University, Egypt.*

تأثير انعائهت بالكارنتين كوازنك كوي10 والزنك ميثيونين كمنشطات على جودة السائل المنوي وبعض مؤشرات الدم في ذكور الماعز الدمقي الشافي خلال فصل الصيف في مصر.

الناحية الجغرافية: 1، مجد أحمد أبوالعلا2

1-قسم الإنتاج الحيواني والداجني – كلية التكنولوجيا الإنتاجية – جامعة الزقازيق – مصر
2-قسم بحوث الإغاثة والمعز – معهد بحوث الحيوان – مركز البحوث الزراعية – مصر

أجريت هذه الدراسة على 12 ذكر من الماعز الدمقي الشافي عمر 1,7 – 3,3 سنة بمتوسط وزن 56.7 كجم +1.34 كجم دراسة تأثير المعاملة بالكارنتين كوازنك كوي10 والزنك ميثيونين كمنشطات للجسم على جودة السائل المنوي وبعض مؤشرات الدم في ذكور الماعز الدمقي الشافي خلال فصل الصيف في مصر.

قسمت ذكور الماعز الدمقي الشافي إلى أربعة مجموعات (كل مجموعة 3 ذكور).

المجموعة الأولى: أعطيت غذاءاً عالية كالوازنة (المقارنة) تتكون من 60% مطعوم غذائي مركز+20% دريس برسيم+20% قش أرز. كونت غذاءاً القاعدية وفقاً لاحتياجات الغذائية المقررة لذكور الماعز طبقاً لمقررات NRC عام 1981.

المجموعة الثانية: الغذاء القاعدية + الحلق بـ الـ10 كارنتين (50 ملغ/جم وزن حي مرتين إسبوعياً).

المجموعة الثالثة: الغذاء القاعدية + الحقن بـ كوازنك كوي10 (6 ملغ/جم وزن حي مرتين إسبوعياً).

المجموعة الرابعة: الغذاء القاعدية + التزويج بـ الزنك ميثيونين كوي25 ملغ/جم / رأس يوم.

أظهرت النتائج مايلي:
1- حدد تحسين معنوي (على مستوى إحتمال 0.01) في جودة السائل المنوي في ذكور المجموعات المعالمة بكملاج الـ كارنتين كوازنك كوي10 والزنك ميثيونين مقارنة بذكور المحمولة بالكارنتين فقط مقدار ذكور المحمولة بالكارنتين أفضل النتائج للخصائص الطبيعية للسائر المنوية مقارنة بالمجموعة المحمولة بالكوارتز كوي10 وال مجموعة المعالمة بالزنك ميثيونين 25 ملغ/جم / رأس يوم.
2- انخفاض درجة حرارة الجلد، الشعر والمستقيم في ذكور الماعز الدمقي الشافي معالمة بالـ كارنتين كوازنك كوي10 والزنك ميثيونين مقارنة بمجموعة المقارنة.
مع ذلك لم يتأثر معدل النبض والتنفس معنويًا بال كارنتين، الكوانزيم كيو10 والزنك ميثيوين.

3. لم تؤثر المعاملات بال كارنتين، الكوانزيم كيو10 والزنك ميثيوين معنويًا على معظم صفات الدم البيوكيميائية باستثناء الـ AST والكورتيزول حيث أظهر تأثير معنوي (على مستوى احتمال 0.01 و 0.05). الحقيقة بـالكارنتين أعطى أقصى مستوى بالنسبة لـ AST وأعلى مستوى لهرمون التستيرون مقارنة بالمجمل الأخرى. في حين سجلت المجموعة المحققة بالكوانزيم كيو10 أعلى مستوى لهرمون الكورتيزول مقارنة بالمجمل الأخرى.

التوصية:

يستخلص من هذه الدراسة أن حقن ذكور الماعز الدمشقى بال كارنتين بمعدل 50 ملليجرام/ كجم وزن حي أو كوانزيم بمعدل 6 مليجرام/ كجم وزن حي أو تجريع الزنك ميثيوين بمعدل 25 مليجرام/ رأس/ يوم يؤدي إلى تحسن جودة السائل المنوي ويعود على الحالة الصحية ويحمي ذكور الماعز الدمشقى من الإجهاد الحراري خلال فصل الصيف الحار في مصر.