FOREHEAD BOX PROTEIN P3 POLYMORPHISM AS A RISK FACTOR OF PREECLAMPSIA: SEVERITY ASSOCIATION

Mohammed E Hasan, Hadeer Nagat Abd Elkader, Mohamed Younis Nasr, Amal Mansour, Mohamed Osman.

1 Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.
2 Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.
3 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.

E. mail: mohamed.elsaid@gebri.usc.edu.eg

ABSTRACT:

Pre-eclampsia is a major cause of maternal and fetal mortality and morbidity. The incidence of pre-eclampsia is 2-10%, depending on the population studied and definitions of pre-eclampsia. Significantly more infants were delivered before the onset of labour and by caesarean section in the group with pre-eclampsia. This study aimed to investigate the association of studied groups with albuminuria, BMI, blood pressure, gestational age, baby wt, age, placental wt, mode of delivery, abortion, fax p3 polymorphism and genotype. Total 75 (25 normotensive women as a control group, 25 women with mild preeclampsia, 25 women with severe preeclampsia) women were enrolled in this study. The anthropometric measurements and clinical characteristics of different study groups as age(18-40), BMI(21-35), diastolic blood pressure(70-150), systolic blood pressure(100-200), abortion(0,1,2), placental wt(300-480), baby wt (2200-3800), albumin (0,1,2,3), mode of delivery (Normal & cs), genotype (GG, TT, TG), gestational age (35-41), and result was analyzed. Placenta samples were collected from the patients attended the Obstetrics and Gynaecology clinic, and informed consents will be obtained from all of them. Age and BMI were taken for each participant.

The most important characteristic of Tregs is their expression of the transcription factor FOXP3. Participants with heterozygous (TG) and homozygous (TT) genotypes had higher BMI compared to those with wild-type (GG, TT, TG) genotypes. Therefore, The women with GG and TG genotypes were severe PE than TT ones and all these associations were statistically significant (P<0.05). Participants with heterozygous (TG) and homozygous (TT) genotypes had higher BMI compared to those with wild-type (GG) genotypes. Women with a history of abortion who
conceived again with the same partner had nearly half the risk of preeclampsia. In Conclusion, Increasing BMI is associated with increased risks of adverse obstetric outcomes.

Conclusively, the protective effect of a prior abortion operated only among women who conceived again with the same partner. An immune-based etiologic mechanism is proposed, whereby prolonged exposure to fetal antigens from a previous pregnancy protects against preeclampsia in a subsequent pregnancy with the same father.

Key words: FOXP3, pregnancy outcome, Polymorphism, proteinuria, severe preeclampsia, Blood pressure, Polymorphism, preeclampsia, Preeclampsia, abortion, body mass index, Pregnancy

INTRODUCTION

Preeclampsia (PE) is a severe complication of pregnancy with a worldwide incidence of 2-10%. It is also, one of the leading causes of maternal and perinatal morbidity and mortality. PE has been associated with insufficient trophoblast invasion of maternal spiral arteries, impaired placental perfusion, and widespread endothelial cell dysfunction (Wang and Cao et al., 2010; Cao et al., 2010).

Preeclampsia, a human-pregnancy-specific disease defined as the occurrence of hypertension and significant proteinuria in a previously healthy woman on or after the 20th week of gestation (Kvehaugen et al., 2017).

Normal pregnancy requires a relative maternal immune tolerance of the fetus. We know that women are at increased risk of preeclampsia in their first pregnancy, and with new partners. Decreased exposure to semen from the father of the child, preconception also has resulted in an increased risk of preeclampsia. Taken together, these observations have led to the hypothesis that preeclampsia may in part be immune mediated. This article focuses on the possibility of an immune component in the development of preeclampsia, and specifically, the role of regulatory T-cells (Tregs) and the Forehead Box P3 (FOXP3) gene. The FOXP3 gene is located at Xp11.23. It has been demonstrated in mouse models that inactivation of FOXP3 results in a lack of Tregs and notable organ-specific autoimmunity (Dekker et al., 2002 and Sakaguch et al., 2010).

It is the most common medical complication of pregnancy whose incidence has continued to increase worldwide, and it is associated with significant maternal morbidity and mortality, accounting for about 50,000 deaths worldwide annually (Duley et al., 2009). Risk factors for preeclampsia include nulliparity, multifetal gestations, previous history of preeclampsia, obesity, diabetes mellitus, vascular and connective tissue disorders like systemic lupus erythematosus and antiphospholipid antibodies, age >35 years at
first pregnancy, smoking, and African American race. Among primiparous women, there is a disparity among ethnic groups as the risk in African American women is twice that of Caucasian women, and the risk is also very high in women of Indian and Pakistani origin (Eiland et al., 2012). Preeclampsia may be mild or severe depending on the degree of blood pressure elevation, degree of proteinuria, extent of edema and the presence of signs and symptoms, including epigastric pain, severe headache and blurred vision. However, severe preeclampsia can result in bleeding disorders and death (Sibai, 2003). Preeclampsia shares many pathophysiologic features with atherosclerosis. Endothelial dysfunction, insulin resistance, and inflammation are recognized features of preeclampsia (Roberts et al., 2010).

Several previous studies have found an association between Foxp3 gene polymorphisms and autoimmune diseases, such as systemic lupus erythematosus (Fontenot et al., 2003), autoimmune thyroid diseases (Santner-Nanan et al, 2009), type I diabetes (Toldi et al., 2008), and allergic rhinitis (Quinn et al., 2011). The decreased expression of Foxp3 in preeclampsia demonstrates that the reduction of Trigs numbers may result in the imbalance of immunologic tolerance between the mother and fetus, thereby participating in the pathogenesis of preeclampsia. However, the association between Foxp3 polymorphisms and preeclampsia has not been reported so far. Preeclampsia was defined as sustained pregnancy-induced hypertension with proteinuria. Hypertension was defined as sustained blood pressure (BP) readings of 140/90 mm Hg or higher, with readings taking place 6 hrs or more apart; or a sustained 15-mm Hg rise in diastolic BP from the first-trimester values; or a 30-mmHg rise in systolic BP also from the first trimester values.

The ISSHP defines proteinuria as a protein concentration of 30 mg/dL or greater (or 1+ on a urine dipstick) in 2 or more random urine specimens collected at least 4 hrs apart. Overweight (body mass index [BMI] more than 25 kg/m²) and obesity (BMI more than 30 kg/m²) have become a major health problem in western countries. T-regulatory cells (T_reg) are important in balancing immune responses and maintaining peripheral tolerance. Current evidence suggests that asthma is characterized by a relative deficiency in T_reg, allowing T helper 2 cells to expand. TT genotype is associated with a reduced risk for pre-eclampsia, hypertensive SGA and abnormal uterine artery Doppler. These findings suggest that the TT genotype may protect against these pregnancy disorders (Andraweera et al., 2011).

Therefore, the purpose of this study was to examine the role of increased TT genotype is associated with a reduced risk for pre-eclampsia. We also aimed to investigate the association between Foxp3 polymorphisms and preeclampsia in Egyptian women with severe and mild preeclampsia and from women with normal pregnancy.
MATERIALS AND METHODS

Study population:
The study included 75 women attended the Obstetrics and Gynaecology department, Maternity Hospital - Ain Shams University, and informed consents will be obtained from all of them. The patients were divided into 3 groups: Normal pregnant women (n=25), Mild pregnant women (25) and severe pregnant women (25) aged 18-40 years. The patients were divided into 3 groups: normotensive women (n=25) that will be taken as a control group, women with mild preeclampsia (n=25) & severe preeclampsia (n=25). The diagnosis of preeclampsia will be made using criteria of the International Society of the Study of Hypertension in Pregnancy (ISSHP), and grouped as having mild preeclampsia, severe preeclampsia and control group. As well as a control group (n=25) healthy volunteers, with age and sex matched with patient groups. An anthropometric measurements, such as weight, height, BMI, systolic and diastolic blood pressure was assessed.

Genotyping:
DNA extraction and purification from less than 10 mg Placenta tissue carried out using (QIAamp DNA Investigator Kit, QIAGEN, USA). Genotyping of FOXP3 rs3761548 was performed with TaqMan allelic discrimination on real-time polymerase chain reaction system (Applied Biosystems). Approximately 1% of samples were run in duplicate and no discrepancies in results were observed.

PCR amplifications were performed in 2ml reaction volumes using Amplifier Kit (TaqMan Investigator, USA) according to the manufacturer’s protocol. Information on PCR conditions for the selected SNPs. DNA samples were subjected to 35 cycles of PCR in an (TaqMan® , Thermoscientific, USA) under the following conditions: 95°C for 2 min; 93°C for 20 s, 72°C for 45 s, repeated for 35 cycles; 65°C for 40 s, and 72°C for 5 min, 4°C ∞ for store.

SNPs were identified using real-time polymerase chain reaction and melting curve analysis of Kit (TaqMan, Thermoscientific, USA) according to the manufacturer’s protocol. The cycle conditions were as follows: activation of the polymerase at 95°C for 2 min, denaturation of the template DNA at 95°C for 5 sec; 60°C for 10 sec; 72°C for 15 sec, repeated for 40 cycles; then step of 95°C for 15 sec; 55°C for 15 sec; 95°C for 5 sec.

Statistical analysis
The collected data were tabulated and analyzed using SPSS version 17 software (SpssInc, Chicago, ILL Company). Categorical data were presented as number and percentages, using Chi square test (X²), or Fisher's exact test (FET) to analyze them. Odds ratios (OR) and the corresponding 95% CI were
RESULTS AND DISCUSSION

Human Foxp3 gene located at chromosome Xp11 containing 11 exons and 10 introns. Foxp3 is not only a sign of CD4 CD25 Treg cells activation, but also correlated with cells’ functions (development and maintenance of cells) in human. FOXP3 expression now serves as the most specific marker of Tregs and it has been used to determine the proportion of Tregs in humans with a variety of disease states (Guerin et al., 2009). Genotyping of rs3761548 was performed with TaqMan allelic discrimination on real-time polymerase chain reaction system (Applied Biosystems). Many researches have been reported the association between FOXP3 variants and several disorders such as autoimmune thyroid diseases (AITDs) (Ban et al., 2007) type I diabetes, rheumatoid arthritis (André et al., 2009) and pre-eclampsia (Jahan et al., 2013). Pre-eclampsia is a multifactorial disorder in which many genes and many risk factors may play role. It is also possible that FOXP3 gene polymorphisms are involved in pre-eclampsia predisposition through an interaction with other genes.

The present results indicated that Foxp3 TT genotype was significantly associated with reduced PE risk compared with GG genotype. Combination of GT/GG was also significantly associated with increased PE risk. Our data provided more evidence to support the potential role of Foxp3 polymorphisms in PE susceptibility. Case-control study including 50 women with pre-eclampsia (mild & severe) and 25 healthy normotensive controls was conducted.

Results from ANOVA for the data included in the Table1 indicated statistically significant differences in baseline characteristics between the 3 groups of pregnant women (Normal, mild PE and severe PE) investigated in age ≥ 40 years (P = 0.55), or casual BP values at the time of the first visit to
Diastolic Blood Pressure (DBP >80 mmHg) was 74.0±5.0 for normal gp, 92.4±4.3 for mild PE and 114.0±10.0 for severe PE. Systolic Blood pressure (SBP >120 mmHg) was 112.0±8.6 for normal gp, 143.6±4.8 for Mild PE and 173.6±16.0 for severe PE (Table 1). Otherwise, The statistically differences in baseline characteristics between genotypes investigated in casual BP values at the time of the first visit to the hospital (SBP(P=0.48), DBP(P=0.42)), gestational age at delivery (P<0.002), placental weight (p<0.046), Baby weight (P=0.018) and BMI (P=0.44). Also, DBP was 105.9±15.01 for GG, 101.7±12.36 for GT and 100±10.95 for TT and SBP was (162.2±20.4, for GG, 145.4±19.3 for GT and 154.5±16.3 for TT).

Women who have the obesity were more exposed to severe PE (72%), comparing to mild PE 16% and normal ones 32%.

Table 1: Characteristics of study participants according to rs3761548 genotypes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Severe PE (n=25)</th>
<th>Mild PE (n=25)</th>
<th>Normal (n=25)</th>
<th>P</th>
<th>GG</th>
<th>TG</th>
<th>TT</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (ys)</td>
<td>26.7±6.57</td>
<td>25.2±0.67</td>
<td>25.3±4.59</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.6±3.02</td>
<td>27.5±2.73</td>
<td>27.7±3.8</td>
<td>0.003</td>
<td>29.4±3.09</td>
<td>29.4±3.16</td>
<td>28.0±3.72</td>
<td>0.44</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>114.0±10.0</td>
<td>92.4±4.3</td>
<td>74.0±5.0</td>
<td><0.001</td>
<td>105.9±15.01</td>
<td>101.7±12.36</td>
<td>100±10.95</td>
<td>0.42</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>173.6±16.0</td>
<td>143.6±4.8</td>
<td>112.0±8.6</td>
<td><0.001</td>
<td>162.2±20.4</td>
<td>145.4±19.3</td>
<td>154.5±16.3</td>
<td>0.48</td>
</tr>
<tr>
<td>Gestational age (w)</td>
<td>Median=38</td>
<td>Median=40</td>
<td>Median=40</td>
<td><0.001</td>
<td>Median=38</td>
<td>Median=39</td>
<td>Median=40</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Median=500</td>
<td>Median=413</td>
<td>Median=450</td>
<td></td>
<td>Median=312.5</td>
<td>Median=400</td>
<td>Median=420</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>Placental weight (gm)</td>
<td>Median=3000</td>
<td>Median=3000</td>
<td>=0.001</td>
<td>Median=2750</td>
<td>Median=2900</td>
<td>Median=3000</td>
<td>0.018</td>
</tr>
</tbody>
</table>

The TT genotype of the maternal Foxp3 polymorphism was associated with a reduced risk for pre-eclampsia. The maternal factors that were significantly associated with studied groups and genotypes included: BMI, presence of Albumine, presence of Abortion, Mode of delivery and the rate.
of cesarean delivery which was significantly higher in the group with severe preeclampsia (72%); this mode of delivery was usually for fetal indications (Table 2). Table 2 clarified the statistically significant association was (P=0.001) between obesity and severe PE, (P<0.001) between albuminuria and severe PE, (P<0.05) between mode of delivery and PE, (P<0.05) between mode of delivery and genotype frequency. In opposite, There were no statistically significant association between obesity and preeclampsia (P>0.05), obesity and genotype frequency (P>0.05), abortion and genotype frequency (P>0.05), albumin in urine and genotype frequency (P>0.05). Regarding the allelic distribution of the Foxp3 polymorphism, total of 26 participants (Normal 16%, Mild PE 32%, Severe PE 56%) had the GG genotype, also 22(Normal 20%, Mild PE 40%, Severe PE 28%) had the GT genotype and 27(Normal 64%, Mild PE 28%, Severe PE 16%) had the TT genotype (Table 3).

The present study demonstrated that BMI of women with severe PE (mean = 30.6) were significantly (P<0.05) higher than those of women with mild PE and normal women (P>0.05) (Table 1). Diastolic blood pressure (DBP) mean values of women with severe and mild PE (114 and 92.4 respectively) were significantly (P<0.05) higher than those of normal women (74), also there was a significant difference between severe and mild PE. The same results were found regarding SBP among severe, mild and normal groups 173.6, 143.6 and 112 respectively. (P<0.001). There is significant difference between systolic (SBP) and diastolic blood pressure (DBP) in sever PE and mild PE. These results agreed with (Hermida et al., 2000) who mentioned the differences in blood pressure between healthy and severe pregnancies can be observed as early as in the first trimester of pregnancy. (Table 1).

GG genotype was only associated with an increased risk for SGA and a reduction in customized birthweight centileACE A11860G genotype is associated with small for gestational age babies (SGA) (Zhou et al., 2013) (Table 1). Gestational age at birth and neonatal and placental weight were significantly lower in women with preeclampsia as compared to controls. Chedraui et al, (2015) found that the frequency of the TT mutant genotype of the C677T polymorphism was higher in the placenta of pregnancies (Chedraui et al., 2015) (Table 1).

There was a significant association (P=0.001) between obesity and severe PE, 72% of severe PE women were obese compared to 16% and 32% of those with mild PE and normal ones respectively. Our obese patients have genotype (59.1%), TG genotype and TT genotype (27.3%), nevertheless genotype TT has lower percentage preeclampsia (Table 2). Albumin at (Nil) value was in normal group (96%), on other hand, Mild & severe were 0% in the PE groups. Overt albuminuria (> 300 mg/24 h) severe
Table 2: Genotype & the studied groups regarding Albumin, BMI, Abortion and mode of delivery.

<table>
<thead>
<tr>
<th>Items</th>
<th>GG, %</th>
<th>TG, %</th>
<th>TT, %</th>
<th>Normal, % (n=25)</th>
<th>Mild PE, % (n=25)</th>
<th>Severe PE, % (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI(Normal) % within Foxp3</td>
<td>9.1</td>
<td>0</td>
<td>18.2</td>
<td>24</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>BMI(Overweight) % within Foxp3</td>
<td>31.8</td>
<td>64.7</td>
<td>54.5</td>
<td>44</td>
<td>72</td>
<td>24</td>
</tr>
<tr>
<td>BMI(Obese) % within Foxp3</td>
<td>59.1</td>
<td>35.3</td>
<td>27.3</td>
<td>32</td>
<td>16</td>
<td>72</td>
</tr>
<tr>
<td>Albumin (Nil)</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>96</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Albumin (+)</td>
<td>31.8</td>
<td>52.9</td>
<td>54.5</td>
<td>0</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>Albumin (+++)</td>
<td>31.8</td>
<td>29.4</td>
<td>18.2</td>
<td>4</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>Albumin (+++)</td>
<td>36.4</td>
<td>17.6</td>
<td>27.3</td>
<td>0</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Abortion(Nil)</td>
<td>77.3</td>
<td>76.5%</td>
<td>72.7</td>
<td>76</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>Abortion(1)</td>
<td>18.2</td>
<td>11.8</td>
<td>27.3</td>
<td>20</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Abortion(2)</td>
<td>4.5</td>
<td>11.8</td>
<td>4.0</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Mode of delivery (NVD)</td>
<td>9.1</td>
<td>58.8</td>
<td>45.5</td>
<td>64</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Mode of delivery (C.S)</td>
<td>90.9</td>
<td>41.2</td>
<td>54.5</td>
<td>36</td>
<td>60</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 3: Comparing the studied groups regarding Foxp3 gene polymorphism.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Severe PE (n=25)</th>
<th>Mild PE (n=25)</th>
<th>Normal (n=25)</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>No. 14, %56.0</td>
<td>No. 8, %32</td>
<td>No. 4, %16</td>
<td>0.55 (NS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.003 (S)</td>
<td><0.001 (HS)</td>
</tr>
<tr>
<td>TG</td>
<td>No. 7, %28.0</td>
<td>No. 10, %40</td>
<td>No. 5, %20</td>
<td><0.001 (HS)</td>
<td>0.033 (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>No. 4, %16.0</td>
<td>No. 7, %28</td>
<td>No. 16, %64</td>
<td>Ref</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>No. 35, %70.0</td>
<td>No. 26, %52</td>
<td>No. 13, %26</td>
<td><0.001 (HS)</td>
<td><0.001 (HS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>No. 15, %30.0</td>
<td>No. 24, %48</td>
<td>No. 37, %74</td>
<td><0.001 (HS)</td>
<td><0.001 (HS)</td>
</tr>
</tbody>
</table>
Overt albuminuria (> 300 mg/24 h) was found in one plus (+) 8% and in 2 plus 36% and in 3 plus 56% (Table 2).

The previous result revealed that the increasing of albumin is associated with severity of PE. The albumin excretion in urine correlates significantly to the albumin during pregnancy. (Risberg et al., 2004) (Table 2). We observed in my result the pregnant women have zero abortion we found severe PE(76%), Mild PE(76%),normal(80%) and the pregnant women have +1 abortion we found severe PE(20%),mild PE(16%),normal (20%) in other hand pregnant women have +2 abortion we found severe PE (4%) ,mild PE(8%), normal (0%). This shows increasing number of abortion decreasing severe PE shows that there was no statistically significant association (P>0.05) between obesity and preeclampsia. we assessed that Women without a history of abortion served as the reference group in logistic regression analyses. Women with a history of abortion who conceived again with the same partner had nearly half the risk of preeclampsia. In contrast, women with an abortion history who conceived with a new partner had the same risk of preeclampsia as women without a history of abortion (Table 2) (Saftlas et al., 2003).

The effect of severe pre-eclampsia on the outcome of infants of very low birth weight was studied in a prospective case control study of 75 of infants of comparable gestation. Significantly more infants were delivered before the onset of labour and by caesarean section in the group with pre-eclampsia .The gestational age (38 w) and baby weight(2750 gm) of women with severe PE were significantly lower than normal women.(40.0 w and 3000 gm) (P<0.05) in (Table 1). These babies tended to be smaller and had a higher incidence of hyaline membrane disease, patent duct usarteriosus, pulmonary air leak, and hypotension. They also required more intensive treatment with oxygen and mechanical ventilation.

The significant difference in birth weight was still apparent at 2 years of age (Szymanowicz and Yu, 1987). Mode of delivery and PE severe (72%) and Mild PE (60%) women had C.S compared to (36%) of normal ones.Moreover, the induction was not connected with higher rates of Cesarean section or an adverse neonatal outcome (Kompmans et al., 2009). Furthermore, women with mild preeclampsia and unfavorable cervix profited more from the induction than other women (tajik et al., 2012). This agrees with the study from (Alanis et al., 2008),in which preterm neonates had also no adverse outcome after induction of labor. Although vaginal delivery in preeclampsia is deemed to be safe, most of the studies showed higher rates of Cesarean section in the preeclamptic
group than in the control group in Table 2. My results in Table 2 shows the frequency of genotype among severe PE and normal groups. It was found that women with GG and TG genotypes were more severe PE than TT ones. And T allele were lower preeclampsia than G allele. There is an increase in regulatory T (Treg) cells, which has an important role. We hypothesized that percentages of Treg cells are decreased in preeclamptic patients. We conclude that a deficiency of regulatory T cells may play a role in the pathophysiology of preeclampsia (Jelmer et al., 2009). TT genotype is associated with a reduced risk for preeclampsia, hypertensive SGA and abnormal uterine artery Doppler. These findings suggest that the TT genotype may protect against these pregnancy disorders (Andraweera et al., 2011).

Association of the single-nucleotide polymorphism (SNP) with BMI was assessed using linear regression models. Participants with heterozygous (TG) and homozygous (TT) genotypes had higher BMI compared to those with wild-type (GG) genotypes. the lowest for placental position of TG versus the TT genotype was posterior location (P = 0.0464). The allele G caused more female embryos than T Allele(Heydarzadeh et al., 2019) as shown in Table 2.

The risk factors for spontaneous abortion in fetal genotypes comparing with their mothers and healthy controls (Yalcintepe et al., 2014). In the cases of unexplained RSA, TT genotype tended to increase according to the number of previous spontaneous abortions in the Japanese population (Kobashiet al., 2005). polymorphism might be a risk factor of lead-related high blood pressure (Lee et al., 2016). GG was associated with the development of albuminuria in diabetic patients and with the reduction in GFR (Ibraheem et al., 2019) as shown in (Table 3). This study clarified that during pregnancy there is an increase in regulatory T (Treg) cells, which has an important role in regulating tolerance to the immunologically distinct fetus. We hypothesised that percentages of Treg cells are decreased in preeclamptic patients (table 9,10,11). T-regulatory cells (Treg) are important in balancing immune responses and maintaining peripheral tolerance.

Current evidence suggests that asthma is characterized by a relative deficiency in Treg, allowing T helper 2 cells to expand. In this study, we aimed to evaluate circulating Treg, defined by the protein FOXP3 (Provoost et al., 2009). CT genotype showed increased risk of breast cancer compared with TT carriers. CT genotype may increase an individual's susceptibility to breast cancer by breaking the balance between Treg-mediated immune tolerance and FOXP3-controlled tumor-suppressive effect (Zheng et al., 2013).
The present data were in agreement with (Gholami et al., 2016), the higher frequency of the C allele in the controls has a protective function. However, in the genotype level there was no significant association. The key finding of the present study was that a common variant (GG) of rs3761548 in the regulatory region of the Foxp3 gene was associated with the development of severity in preeclampsia pregnant women, in addition, the G allele has a protective factor in patients with micro albuminuria and macro albuminuria.

A series of recent publications suggest that Tregs may be involved in the pathogenesis of preeclampsia. Sasaki et al assessed Tregs in placentas of women with preeclampsia. They used Immunohisto-chemical staining of placental tissue to detect the expression of Foxp3 in placental Tregs by using antibodies against FOXP3. They published that the average percentage of cells expressing FOXP3 was less in women with preeclampsia than healthy controls. They also compared the percentage of Tregs in the peripheral blood between women with preeclampsia and both pregnant and nonpregnant healthy controls. They found a significant decrease in the number of Tregs in women with preeclampsia (Sasaki et al., 2007).

Conclusion:
The genetic polymorphism in FOXP3 gene (rs3761548) may contribute to the pathogenesis of preeclampsia’s -regulatory cells (Treg) are important in balancing immune responses and maintaining peripheral tolerance and are defined by the protein FOXP3. Otherwise, CT genotype increased risk of PE compared with TT carriers.

REFERENCE:

Cao WP, Qian QJ, Jian W (2010) Changes and significance of the peripheral blood CD4+ CD25+ Foxp3+ regulatory T cell in gestational hypertension patients. Pathophysiology 26 (7): 1425–1427.

Heydarzadeh M J, Mehmannelavaz Y. 2019. Effects of rs929271 SNP in Leukemia Inhibitory Factor Gene on Recurrent Pregnancy Loss, Placental Location and Fetal Gender, Gene Cell Tissue, 6(2):

العدد المظهرى للبروتين P3 كعامل خطىري في تسمم الحمل

محمد حسن 1، هدير نجاتي عبده القادر 2، محمد يونس نصر 2، أمل منصور 3
محمد عثمان 1.

1- قسم المعلوماتية الحيوية، معهد أبحاث الهندسة الوراثية والتكنولوجيا الحيوية (GEBRI)، جامعة مدينة السادات، مصر.
2- قسم البيولوجيا الجزيئية والهندسة الوراثية و معهد بحوث التكنولوجيا الحيوية (GEBRI)، جامعة مدينة السادات، مصر.
3- قسم الكيمياء الحيوية والبيولوجيا الجزيئية بكلية الطب، جامعة عين شمس، مصر.

تتسم الحمل سبب رئيسي لوفيات واعتلال الأمهات والجنين. تتراوح نسبة حدوث مقدمات الارتجاع من 2 إلى 10%، اعتباً على السكان المدروسين وتعريفات تسمم الحمل. تم تسليم عدد أكبر بشكل ملحوظ من الرضع قبل بدء المخاض والعملية الفيزيائية في المجموعة المصابة بمقدمات الارتجاع. هدفت هذه الدراسة على التحقق من ارتباط المجموعات المدروسة بالبيئة الزرلية، مؤشر كثافة الجسم، ضغط الدم، عمر الحمل، وزن الطفل، العمر، وزن المشيمة، طريقة الولادة، الإجهاض، تعذر أشكال الثعلب P3 والنمط الجنيني.

تم تسجيل إجمالًا 75 (25 امرأة معدة الضغط كمجموعة ضابطة، و 25 امرأة مصابات بمقدمات الارتجاع الخفيفة، و 25 امرأة مصابات بمقدمات الارتجاع الشديدة) في هذه الدراسة. كان لدى المشاركين ذوي الأنباط الجينية FOX3.3 متغيرة الزبجوت (TG) والمتجانسة (TT) مؤشر كثافة الجسم أعلى مقارنةً بالأنماط الجينية من النوع البري (GG). وكانت كل هذه الارتباطات ذات شدة من تلك التي TT PE و GG جينية، وداله إحصائي < 0.05. ترتبط زيادة مؤشر كثافة الجسم زيادة مخاطر الولادة الضائرة. وبالتالي، فإن التأثير الوظيفي للإحجام الساقط لا يعمل إلا بين النساء اللواتي حملن مرة أخرى مع نفس الشريك. تم اقتراح آلية مسببة قائمة على المناعة، حيث يحمي التعذر المطول لولادات المضادات الجانبية من حمل سابق من تسمم الحمل لاحق مع نفس الأب.

إن معدل تسمم الحمل الطبيعي يكون أقل في الوزن الطبيعي وقيمة أكبر في الوزن الزائد ولكن من ناحية أخرى يظهر معدل تسمم الحمل الشديد نسبة أعلى في السمنة وأقل قيمة في الوزن الطبيعي والوزن الزائد، نلاحظ أن النسبة العالية من الحالات الشديدة كانت سمنة ولكن خفيفة وطبيعية كانت زيادة الوزن. إن النساء ذوات مؤشر
كتلة الجسم المنخفض وعدد أقل يعانين من زيادة الوزن أو السمنة. كما أن النساء اللواتي لديهن تاريخ من الإجهاض وحملن مرة أخرى مع نفس الشريك كان لديهن ما يقرب من نصف خطر الإصابة بتسمم الحمل. على النقيض من ذلك، فإن النساء اللواتي لديهن تاريخ إجهاض وحملن مع شريك جديد لديهن نفس مخاطر الإصابة بتسمم الحمل مثل النساء اللواتي ليس لديهن تاريخ من الإجهاض.

الوصية:

أن زيادة الألبرومين ترتبط مع شدة تسمم الحمل. كما وجد أن إفراز الألبرومين في البول يرتبط ارتباطًا وثيقًا بالألبرومين أثناء الحمل. على الرغم من أن الولادة المهبلية في حالة تسمم الحمل تعتبر آمنة، إلا أن معظم الدراسات أظهرت معدلات أعلى في الولادة القصبية في المجموعة المسببة للالتهاب أكثر من المجموعة الضابطة.