Table 2: Effect of different concentrations of potassium and ethephon on vegetative growth characteristics of squash plants during the two growing seasons of 2013 and 2014

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Vine length (cm)</th>
<th>Vine diameter (mm)</th>
<th>Leaves number per plant</th>
<th>Fresh weight/plant (g)</th>
<th>Dry weight/plant (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>70.50</td>
<td>66.60</td>
<td>2.25</td>
<td>1.90</td>
<td>23.10</td>
</tr>
<tr>
<td>1 K</td>
<td>87.33</td>
<td>82.06</td>
<td>2.34</td>
<td>2.10</td>
<td>32.33</td>
</tr>
<tr>
<td>2K</td>
<td>93.50</td>
<td>87.36</td>
<td>2.45</td>
<td>2.18</td>
<td>34.00</td>
</tr>
<tr>
<td>3K</td>
<td>84.00</td>
<td>80.71</td>
<td>2.53</td>
<td>2.25</td>
<td>30.33</td>
</tr>
<tr>
<td>150 E</td>
<td>83.10</td>
<td>76.50</td>
<td>2.30</td>
<td>2.07</td>
<td>25.00</td>
</tr>
<tr>
<td>250 E</td>
<td>70.43</td>
<td>65.70</td>
<td>2.36</td>
<td>2.17</td>
<td>29.06</td>
</tr>
<tr>
<td>350 E</td>
<td>60.13</td>
<td>50.66</td>
<td>2.40</td>
<td>2.27</td>
<td>26.23</td>
</tr>
<tr>
<td>1 K+150 E</td>
<td>80.73</td>
<td>74.86</td>
<td>2.30</td>
<td>2.16</td>
<td>26.91</td>
</tr>
<tr>
<td>1 K+250 E</td>
<td>79.03</td>
<td>72.33</td>
<td>2.39</td>
<td>2.34</td>
<td>30.83</td>
</tr>
<tr>
<td>1 K+350 E</td>
<td>73.00</td>
<td>69.00</td>
<td>2.53</td>
<td>2.37</td>
<td>29.50</td>
</tr>
<tr>
<td>2 K+150 E</td>
<td>87.06</td>
<td>78.33</td>
<td>2.31</td>
<td>2.25</td>
<td>32.00</td>
</tr>
<tr>
<td>2 K+250 E</td>
<td>78.70</td>
<td>75.56</td>
<td>2.37</td>
<td>2.35</td>
<td>36.33</td>
</tr>
<tr>
<td>2 K+350 E</td>
<td>73.50</td>
<td>70.42</td>
<td>2.55</td>
<td>2.38</td>
<td>26.76</td>
</tr>
<tr>
<td>3 K+150 E</td>
<td>81.80</td>
<td>71.50</td>
<td>2.31</td>
<td>2.28</td>
<td>31.05</td>
</tr>
<tr>
<td>3 K+250 E</td>
<td>77.73</td>
<td>70.40</td>
<td>2.44</td>
<td>2.37</td>
<td>33.15</td>
</tr>
<tr>
<td>3 K+350 E</td>
<td>75.33</td>
<td>65.16</td>
<td>2.57</td>
<td>2.40</td>
<td>30.02</td>
</tr>
<tr>
<td>L.S.D 5%</td>
<td>3.589</td>
<td>2.619</td>
<td>0.149</td>
<td>0.079</td>
<td>2.854</td>
</tr>
</tbody>
</table>

K= Potassium (ml K₂O l⁻¹)
E=Ethephon (ppm)
Table 3: Effect of different concentrations of potassium and ethephon on floral traits of squash plants during the two growing seasons of 2013 and 2014

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of male flowers/plant</th>
<th>No. of female flowers/plant</th>
<th>sex ratio (%)</th>
<th>femaleness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>9.04</td>
<td>9.01</td>
<td>7.04</td>
<td>7.04</td>
</tr>
<tr>
<td>1 K</td>
<td>8.53</td>
<td>8.46</td>
<td>9.26</td>
<td>9.00</td>
</tr>
<tr>
<td>2K</td>
<td>7.39</td>
<td>7.26</td>
<td>9.86</td>
<td>9.53</td>
</tr>
<tr>
<td>3K</td>
<td>7.53</td>
<td>7.31</td>
<td>9.72</td>
<td>9.67</td>
</tr>
<tr>
<td>150 E</td>
<td>7.21</td>
<td>7.05</td>
<td>10.48</td>
<td>10.32</td>
</tr>
<tr>
<td>250 E</td>
<td>7.04</td>
<td>6.96</td>
<td>10.83</td>
<td>10.72</td>
</tr>
<tr>
<td>350 E</td>
<td>6.99</td>
<td>6.79</td>
<td>11.01</td>
<td>10.97</td>
</tr>
<tr>
<td>1 K+150 E</td>
<td>7.63</td>
<td>7.52</td>
<td>10.54</td>
<td>10.47</td>
</tr>
<tr>
<td>1 K+250 E</td>
<td>7.13</td>
<td>7.10</td>
<td>10.73</td>
<td>10.64</td>
</tr>
<tr>
<td>1 K+350 E</td>
<td>7.00</td>
<td>6.90</td>
<td>11.28</td>
<td>11.15</td>
</tr>
<tr>
<td>2 K+150 E</td>
<td>7.14</td>
<td>7.02</td>
<td>10.85</td>
<td>10.70</td>
</tr>
<tr>
<td>2 K+250 E</td>
<td>6.82</td>
<td>6.73</td>
<td>11.54</td>
<td>11.41</td>
</tr>
<tr>
<td>2 K+350 E</td>
<td>6.46</td>
<td>6.31</td>
<td>12.02</td>
<td>11.87</td>
</tr>
<tr>
<td>3 K+150 E</td>
<td>7.20</td>
<td>7.00</td>
<td>11.00</td>
<td>10.90</td>
</tr>
<tr>
<td>3 K+250 E</td>
<td>6.93</td>
<td>6.81</td>
<td>11.36</td>
<td>11.31</td>
</tr>
<tr>
<td>3 K+350 E</td>
<td>6.81</td>
<td>6.49</td>
<td>11.86</td>
<td>11.71</td>
</tr>
<tr>
<td>L.S.D 5%</td>
<td>0.138</td>
<td>0.163</td>
<td>0.223</td>
<td>0.182</td>
</tr>
</tbody>
</table>

K= Potassium (ml K₂O l⁻¹) E=Etaphon (ppm)
Table 4: Effect of different concentrations of potassium and ethephon on yield and its components of squash plants during the two growing seasons 2013 and 2014

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of fruits/plant</th>
<th>Fruit fresh weight (g)</th>
<th>Early yield (kg/plot)</th>
<th>Total yield (kg/plot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.76</td>
<td>5.35</td>
<td>63.20</td>
<td>65.70</td>
</tr>
<tr>
<td>1 K</td>
<td>7.34</td>
<td>7.19</td>
<td>66.77</td>
<td>67.95</td>
</tr>
<tr>
<td>2K</td>
<td>8.01</td>
<td>7.54</td>
<td>68.66</td>
<td>69.56</td>
</tr>
<tr>
<td>3K</td>
<td>7.76</td>
<td>7.87</td>
<td>67.62</td>
<td>68.68</td>
</tr>
<tr>
<td>150 E</td>
<td>9.75</td>
<td>8.63</td>
<td>64.36</td>
<td>66.11</td>
</tr>
<tr>
<td>250E</td>
<td>9.95</td>
<td>8.82</td>
<td>63.85</td>
<td>65.35</td>
</tr>
<tr>
<td>350E</td>
<td>10.00</td>
<td>9.01</td>
<td>60.89</td>
<td>61.62</td>
</tr>
<tr>
<td>1 K+150 E</td>
<td>9.87</td>
<td>8.82</td>
<td>64.42</td>
<td>66.71</td>
</tr>
<tr>
<td>1 K+250 E</td>
<td>10.01</td>
<td>8.89</td>
<td>65.11</td>
<td>66.84</td>
</tr>
<tr>
<td>1 K+350 E</td>
<td>10.26</td>
<td>9.17</td>
<td>60.10</td>
<td>62.45</td>
</tr>
<tr>
<td>2 K+150 E</td>
<td>10.11</td>
<td>9.00</td>
<td>60.96</td>
<td>61.64</td>
</tr>
<tr>
<td>2 K+250 E</td>
<td>10.51</td>
<td>9.31</td>
<td>69.32</td>
<td>69.73</td>
</tr>
<tr>
<td>2 K+350 E</td>
<td>10.98</td>
<td>9.91</td>
<td>62.95</td>
<td>65.76</td>
</tr>
<tr>
<td>3 K+150 E</td>
<td>10.20</td>
<td>9.14</td>
<td>63.93</td>
<td>64.67</td>
</tr>
<tr>
<td>3 K+250 E</td>
<td>10.34</td>
<td>9.25</td>
<td>63.31</td>
<td>67.63</td>
</tr>
<tr>
<td>3 K+350 E</td>
<td>10.36</td>
<td>9.62</td>
<td>63.80</td>
<td>66.86</td>
</tr>
<tr>
<td>L.S.D 5%</td>
<td>0.236</td>
<td>0.158</td>
<td>2.416</td>
<td>0.302</td>
</tr>
</tbody>
</table>

K= Potassium (ml K₂O 1⁻¹) E=Ethephon (ppm)
Figure (1). Effect of different concentrations of Potassium and Ethephon on the cyclic pattern of producing fruits (as means of fruits number for each harvest) during the two growing seasons of 2013 and 2014.